
Naming Compounds

Day 2

Working backwards: name to formula

- It's possible to determine a formula from a name
- E.g. What is the formula of sodium oxide?
- To get the answer, first write the valences: $Na^1O^2 \rightarrow Na_2O$
- What is the formula of copper(II) oxide?
 Cu²O² → Cu₂O₂ → CuO
- For covalent compounds, simply use the prefixes to tell you the number of each element:
- What is the formula for dinitrogen trioxide? N_2O_3
- Give formulae for: lithium sulfide, dinitrogen monoxide, lead(IV) sulfate

Assignment

- 1. Name each according to IUPAC rules:
 - a) ZnS, b) FeCl₃, c) CaCO₃, d) P₂O₅, e) NaCN, f) N₂F₂, g) MgHPO₄, h) Cu(BrO₃)₂, i) K₂O, j) BF₃
- 2. Give the valence of a) Fe in FeO, b) Mn in MnO₂
- 3. Write formulas for: a) sodium oxide,
 - b) potassium iodide, c) plumbic sulfide,
 - d) mercury(I) oxide, e) ferrous oxide,
 - f) iron(II) phosphate, g) copper(II) fluoride,
 - h) dichlorine monoxide, i) silver sulfide,
 - j) magnesium nitride, k) aluminum hypochlorite,
 - I) iodine pentafluoride, m) calcium chromate,
 - n) diphosphorus pentasulfide

Naming Bases

- Bases contain an OH group
- C₆H₁₂O₆ does not have an OH group
- If an OH group is present it will be clearly indicated: e.g. NaOH, Ca(OH)₂
- Also notice that bases have a metal (or positive ion such as NH₄+ at their beginning)
- Bases are named like other ionic compounds:
- +ve is named first, followed by the polyatomic ion

Ca(OH)₂ CuOH

aluminum hydroxide ammonium hydroxide

Naming Acids: Binary acids

- All acids start with H (e.g. HCl, H₂SO₄)
- 2 acids types exist: binary acids and oxyacids Binary: H + non-metal. E.g. HCI Oxy: H + polyatomic ion. E.g. H₂SO₄
- Each have different naming rules.

Binary acids: naming depends on state of acid

- If it's not aqueous: hydrogen + non-metal HCl(g) = hydrogen chloride
- If it is aqueous: hydro + non-metal + ic acid HCl(aq) = hydrochloric acid (aqueous hydrogen chloride)

HBr(s) HI(aq) $H_2S(aq)$ $H_2S(g)$

Naming Acids: Oxyacids

- Naming does not depend on the state (aq)
- 1) name the polyatomic ion
 - 2) replace ate with ic, ite with ous
 - 3) change non-metal root for pronunciation
 - 4) add "acid" to the name

E.g. H₂SO₃

1) sulphite,

2) sulphous,

3) sulphurous, 4) sulphurous acid

HNO₂

hypochlorous acid

H₃PO₄(aq)

carbonic acid

Assignment: give formula or name

- a) chloric acid
- b) hydrosulfuric acid
- c) hydrobromic acid
- d) phosphorous acid
- e) iodic acid
- f) HCl(g)
- g) HCI(aq)
- h) H₂SO₄(s)
- i) H₂SO₄(aq)
- j) HCIO₂
- k) HF(aq)

Hydrates

- Some compounds contain H₂O in their structure. These compounds are called hydrates.
- This is different from (aq) because the H₂O is part of the molecule (not just surrounding it).
- The H₂O can usually be removed if heated.
- A dot separates water: e.g. CuSO₄•5H₂O is copper(II) sulfate pentahydrate.
- A greek prefix indicates the # of H₂O groups.

Na₂SO₄•10H₂O

NiSO₄•6H₂O

sodium carbonate monohydrate barium chloride dihydrate